Enhancement of Mechanical Engineering Curriculum to Introduce Manufacturing Techniques and Principles for Bio-inspired Product Development

نویسندگان

  • Hugh A. Bruck
  • Alan L. Gershon
  • Satyandra K. Gupta
چکیده

Bio-inspired products and devices take their inspiration from nature [Gold00]. Current mechanical engineering curricula do not cover manufacturing techniques and principles needed to develop such products and devices. We have been enhancing the mechanical engineering undergraduate curriculum by integrating recent advances in the manufacturing of bioinspired products and devices through the following activities: 1. Insert a new sequence of instructional materials on bio-inspired concepts into the mechanical engineering curriculum. 2. Disseminate the materials developed for the new modules and course notes through a dedicated web site. As a result of the curriculum enhancement, a new generation of mechanical engineers will acquire the knowledge necessary to develop products and conduct research for a wide variety of applications utilizing bio-inspired concepts. The project (1) integrates emerging manufacturing technologies based on biological principles into the Mechanical Engineering curriculum, (2) utilizes multi-media technology for disseminating course content, and (3) trains graduate students and faculty participating in its implementation in an emerging technology and thereby contribute to faculty development. Specifically, curriculum is being developed that discusses the following manufacturing technologies and principles: 1. Concurrent Fabrication and Assembly: Manufacturing techniques and principles, such as solid freeform fabrication, compliant mechanisms, and multi-stage molding, that can eliminate the manufacturing and assembly of individual components as is the case for almost all natural systems. 2. Self Assembly: Principles for manufacturing a variety of products from a few building blocks using bioinspired techniques such as templating and supramolecular chemistry. 3. Functionally Graded Materials: Bio-inspired development of new products through the gradual variation of material properties at multiple length scales through manufacturing processes such as sputtering and powder processing. The curriculum development effort makes two significant contributions to mechanical engineering education: (a) integration of a new research on bio-inspired products and devices into the mechanical engineering curriculum through new courses and revision of existing courses, (b) development of new instructional material for mechanical engineering education based on bio-inspired concepts. There are also broader impacts in the following areas: (a) undergraduate students who might not otherwise pursue studies in mechanical engineering will be attracted to the multidisciplinary area of bio-inspired products, (b) dissemination of the curriculum enhancement through conference presentations, a workshop, and dedicated web site, and (c) a biologically-oriented pedagogical approach to mechanical engineering education that ensures broader access to the knowledge needed to enhance the interest and skills of future engineers and researchers educated through this research program. NOMENCLATURE Biologically Inspired Manufacturing, Concurrent Fabrication and Assembly, Design for No Assembly, Compliant Mechanisms, Functionally Graded Materials

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training mechanical engineering students to utilize biological inspiration during product development.

The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include...

متن کامل

New Educational Tools and Curriculum Enhancements for Motivating Engineering Students to Design and Realize Bio-Inspired Products

The use of bio-inspiration to create new products and devices requires the development of new design tools and manufacturing technologies, as well as the education of students capable of using them. At the University of Maryland, we have developed new educational tools that emphasize bioinspired product realization. These tools include the development of a bioinspired design repository, a concu...

متن کامل

BIOSOARM: a bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors

Biological collective systems have been an important source of inspiration for the design of production systems, due to their intrinsic characteristics. In this sense, several high level engineering design principles have been distilled and proposed on a wide number of reference system architectures for production systems. However, the application of bio-inspired concepts is often lost due to d...

متن کامل

Estimation of Roughness Parameters of A Surface Using Different Image Enhancement Techniques (TECHNICAL NOTE)

Surface roughness measurement is widely used to estimate the quality of the product during manufacturing processes. It has a great importance in manufacturing fields such as ceramic tiles, glass, and iron. Many are using surface profile-meter with a contact stylus to measure the surface roughness of work piece. In the stylus method, a stylus is moved along the surface and the vertical movement ...

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004